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Summary

The three-dimensional reconstruction of macromolecules
from two-dimensional single-particle electron images requires
determination and correction of the contrast transfer function
(CTF) and envelope function. A computational algorithm
based on constrained non-linear optimization is developed to
estimate the essential parameters in the CTF and envelope
function model simultaneously and automatically. The
application of this estimation method is demonstrated with
focal series images of amorphous carbon film as well as images
of ice-embedded icosahedral virus particles suspended across
holes.

Introduction

The two-dimensional (2D) images collected from an electron
microscope (EM) are not perfect 2D projections of the three-
dimensional (3D) structure. Each experimentally collected
image can be treated as a modulated projection with noise.
The modulation of the image is determined by a number
of factors that are related to the EM settings and imaging
conditions (Chiu, 1978; Saad et al., 2001). The modulation
process has been modelled mathematically as the contrast
transfer function (CTF) (Erickson & Klug, 1970; Thon, 1971)
and the envelope function (Hanszen, 1967). Each of these
functions contains a number of parameters affecting the image
contrast and quality. In this work, we assume that CTF
modulation is considered invariant in the entire micrograph.
This assumption is valid in general for single-particle cryo-
EM study in which the grid plane is normal to the incident
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electron beam. However, the CTF must be considered position-
dependent in tomography studies when the sample grid is
purposely tilted or even in some single-particle studies if the
grid is severely bent.

The CTF parameter estimation problem is essentially a non-
linear curve-fitting problem. A number of schemes have been
proposed to solve this problem for single-particle imaging (Zhu
et al., 1997; Conway & Steven, 1999; Ludtke et al., 1999;
Huang et al., 2003; Sander et al., 2003; Velazquez-Muriel
et al., 2003; Mallick et al., 2005). However, most of these
schemes involve some ad-hoc or manual fitting steps instead
of making use of the state-of-the-art numerical optimization
algorithms that can be done objectively and accurately. As a
result, parameter determination becomes difficult, especially
when the experimental images are collected near focus where
only one or two CTF rings are apparent.

This paper describes the use of efficient and accurate
numerical optimization techniques to estimate these
parameters by treating the estimation problem as a
constrained non-linear optimization problem. Such an
approach was perceived as infeasible or too computationally
demanding in the past. Our experimental results demonstrate
that this can be done reliably, efficiently and automatically.

Problem formulation

A thin biological specimen, consisting of mostly low atomic
elements (C, N and O), can be approximated as a weak-phase
object for transmission electron microscopy. For the weak-
phase objects, the mathematical model that describes the
relationship between the object potential function and the
observed image has been well established (Erickson & Klug,
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1970; Hanszen & Trepte, 1971; Thon, 1971). In order to
demonstrate our approach, we will describe both the well-
known and the derived formulations.

Mathematical model for image contrast

In the image contrast theory, the 2D Fourier transform of an
image, which we denote by I(s), can be related linearly to the
structure factor of the specimen, F(s), through the expression

I(s) = F(s)H(s) + N(s), (1)

where H(s) is the modulation function characterizing the
instrument and experimental conditions, and N(s) is the
noise function originating from various sources including
surrounding buffer, electron inelastic scattering and recording
media. Here, the bold-faced s denotes a 2D frequency vector.
This is to be distinguished from the non-bold-faced s, which
denotes a one-dimensional, (1D) spatial frequency scalar.

Note that I(s), F(s) and N(s) are all complex-valued functions.
In this paper, we assume that the microscope optics is well
aligned during image acquisition so that H(s) is a real-
valued function. The computational problem to be solved is
to construct H(s) and N(s), given I(s) and F(s). Analytical
expressions for H(s) exist (Erickson & Klug, 1970; Hanszen
& Trepte, 1971; Thon, 1971). These expressions contain
a number of unknown parameters that can be determined
through a numerical fitting procedure (Saad et al., 2001). If
one assumes that the projection image is not correlated with
the background noise, then it follows from Eq. (1) that

I2(s) = F2(s)H2(s) + N2(s), (2)

where I2(s), F2(s) and N2(s) are the power spectra of the
observed projection image, the structure factor and the
background noise, respectively. Here, the power spectrum of
an image is defined as the expectation value of the Fourier
intensity of the image. The subscript 2 in Eq. (2) is used
to indicate that functions I2(s), F2(s) and N2(s) describe
mappings from the 2D frequency space to the set of real
numbers. These functions are to be distinguished from the
functions I (s), F (s) and N(s) that are defined in subsequent
sections to describe mappings from 1D frequency to real
numbers.

Equation (2) can be written in polar coordinates as

I2(s, θ) = F2(s)H2(s, θ) + N2(s, θ). (3)

Note that F2(s), which corresponds to the rotationally
averaged value of the structure factor associated with the
specimen, is a 1D rotationally invariant function. Such
rotationally averaged 1D structure factor can be measured in
an X-ray scattering experiment of a solution suspension of the
specimen (Schmid et al., 1999; Thuman-Commike et al., 1999;
Saad et al., 2001). Alternatively, structure factor can also be
estimated at low resolution directly from particle images and
at high resolution from a model (Ludtke et al., 1999). When

F2(s) is known, the parameter estimation problem becomes
well defined.

The analytical function used to describe the background
noise term N2(s, θ) in Eq. (3) is somewhat arbitrary and less
well defined in the image contrast theory. In this paper, we
extend the model defined previously (Saad et al., 2001) by
including the azimuthal dependence of the functions, that is,
we set

N2(s, θ) = n3(θ)e−n4(θ)s2−n2(θ)s−n1(θ)
√

s, (4)

where ni (θ)(i = 1, 2, 3, 4) are unknown parameters to be
determined.

The modulation function H2(s, θ) can be defined (Erickson
& Klug, 1970; Hanszen & Trepte, 1971; Thon, 1971) as

H2(s, θ) = α2CTF2(s, θ) · E 2(s, θ), (5)

where

CTF(s, θ) = −
(√

1 − Q 2 sin γ (s, θ) + Q cos γ (s, θ)
)

,

(6)

γ (s, θ) = 2π

(
−C sλ

3s4

4
+ %z(θ)λs2

2

)
. (7)

The sin[γ (s, θ)] and cos[γ (s, θ)] terms in the CTF function
in Eq. (6) are known as the phase CTF and the amplitude
CTF, respectively (Erickson & Klug, 1970). The wavelength
(λ) and the spherical aberration (C s ) are known constants.
The unknown parameters to be estimated in Eq. (5) are the
defocus (%z), the amplitude contrast ratio (Q ), the amplitude
coefficient (α) and the envelope function (E (s, θ)). We should
point out that Q is, in principle, dependent on the spatial
frequency and atomic composition of the specimen. However,
for weak-phase objects, the variation of Q with respect to these
factors is so small that it can be considered as a constant
parameter. The defocus %z(θ) is anisotropic in general. It can
be represented by

%z (θ) = %z0 + %z1 sin (2 (θ − θ0)) , (8)

where %z0 is the mean defocus of the sample, %z1 is the
focal difference due to axial astigmatism and θ0 represents
the reference angle of axial astigmatism (Thon, 1971). When
astigmatism is present, the power spectrum often exhibits
elliptically shaped CTF rings.

The envelope function E (s, θ) in Eq. (5) is used to account for
the spatial and temporal coherence effects, specimen drift and
other signal decay factors such as the modulation function
of the recording medium in H2(s, θ). Analytical expressions
for some of these factors in the envelope function have been
described previously (Hanszen, 1967, 1971; Frank, 1969,
1976). In practice, it has been empirically observed that the
envelope function for images of ice-embedded particles with
sub-nanometre resolution (<6 Å) data from most of the EMs
can be approximated by a single Gaussian function of the form

E (s, θ) = e−B(s,θ)s2
, (9)
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where the non-negative parameter B(s, θ) has been called
the experimental B factor (Saad et al., 2001). The techniques
we employ to solve the parameter estimation problem
allows alternative formulations of the envelope function. In
particular, we have experimented with using a more general
envelope function of the form

E (s, θ) = e−B1(s,θ)s−B2(s,θ)s2−B3(s,θ)s3

to model decay of the power spectrum from low to high
frequencies for some data sets.

Parameter estimation via constrained non-linear optimization

We measure the discrepancy between the analytical model
in Eq. (3) and the experimentally measured power spectrum
Î2(s, θ) by the residual function r2(s, θ; x) = I2(s, θ; x) −
Î2(s, θ; x), where x = (α,%z0,%z1, θ0, B, Q , n1, n2, n3, n4).
To determine the optimal value of x, we propose to minimize
the non-linear objective function

ρ2(x) = ‖r2(s, θ; x)‖2 , (10)

where ‖r2(s, θ; x)‖ is defined as the standard two-norm form
of r2(s, θ; x), that is,

‖r2(s, θ; x)‖ =

√√√√√
smax∫

smin

2π∫

0

r 2
2 (s, θ; x)dθd s, (11)

for some low and high cutoff frequencies smin and smax.
When C T F (s, θ), E (s, θ) and N2(s, θ) are independent of

θ (i.e. astigmatism and drift are ignored, which is the case
for good-quality experimental images), we can simplify the
notation to obtain

I (s) = α2 F (s)E 2(s)C T F 2(s) + N(s). (12)

When the structure factor F (s) is available, one can determine
the parameters in x = (α,%z0, B, Q , n1, n2, n3, n4) by
minimizing the function

ρ(x) = ‖r (s; x)‖2 , (13)

where r (s; x) is the 1D residual function that measures the
discrepancy between the 1D analytical model in Eq. (12) and
the rotationally averaged power spectrum Î (s). The norm of
r (s; x) is defined as

‖r (s; x)‖ =

√√√√√
smax∫

smin

r 2(s; x)d s ≈

√√√√
j= jmax∑

j= jmin

r 2(s j ; x). (14)

Note that the objective function in Eq. (14) is evaluated on the
interval [smin, smax]. The reason for imposing such a restriction
is to eliminate the unreliable and noisy data at both low and
high frequencies.

In general, the objective function defined in Eq. (14) has
many local minima. To narrow the search range and avoid
being trapped at an undesirable local minimum, we impose

explicit constraints. In most cases, the defocus value of %z
can be estimated from the experimentally intended imaging
conditions to be within [%zmin,%zmax]. The valid values for
Q are between 0 and 1 (Erickson & Klug, 1970). However,
in practice, the upper bound for Q is generally believed to
be much smaller than 1 (Toyoshima et al., 1993). Because
the experimental B factor is always positive, as defined in Saad
et al. (2001), the inequality of the type 0 ≤ B ≤ Bmax, for some
constant Bmax, is a natural constraint. Similarly, to ensure that
the intensity of the background noise never falls below 0, we
impose n3 ≥ 0.

In addition to these bound constraints, we also impose a
set of non-linear inequality constraints in the form of N(s j ) ≤
Î (s j ), for j = jmin, . . . , jmax. These constraints are developed
to ensure that the noise background term N(s) is always less
than Î (s).

Because the intensity of the background signal typically
decreases from low to high spatial frequencies, it is desirable
to include constraints of the following type:

∂ N(s j )
∂s

≤ 0 for j = jmin, . . . , jmax. (15)

In summary, when C T F (s, θ), E (s, θ) and N2(s, θ) are
independent of θ, as found in many experimental cases (e.g.
Jiang et al., 2003, 2008; Ludtke et al., 2004, 2008; Liu
et al., 2007), we can estimate the unknown parameters for the
CTF function that characterize the image modulation process
by solving the following constrained non-linear optimization
problem:

min
x

ρ(x), (16)

subject to

%zmin ≤ %z ≤ %zmax, (17)

0 ≤ B ≤ Bmax, (18)

Q min ≤ Q ≤ Q max, (19)

0 ≤ n3, (20)

N(s j ) ≤ Î (s j ) for j = jmin, . . . , jmax, (21)

∂ N(s j )
∂s

≤ 0 for j = jmin, . . . , jmax, (22)

where ρ(x) is defined in Eq. (13).
In practice, the magnitude of I (s) may vary by several orders

of magnitudes between the low and the high frequencies, as
seen in the X-ray solution scattering of the single-particle
suspension (Thuman-Commike et al., 1999; Ludtke et al.,
2001). In this case, applying a non-linear optimization solver
to Eqs. (16)–(22) directly may result in an approximate
solution that produces more accurate low-frequency fit at
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the expense of severe misfit at the intermediate- and high-
frequency ranges of the power spectrum. Because the defocus
parameter %z, the most important parameter in the CTF
model, is largely determined by the intermediate-to-high-
frequency part of the power spectrum, such a misfit is likely to
be detrimental in subsequent computations.

To overcome this problem, one may introduce a set of
weights ω j in Eq. (13) that vary with respect to the frequency
s j . That is, one can define the objective function in Eq. (13) to
be

ρ(x) =
∑

smin≤s j ≤smax

[
Î (s j ) − I (s j )

]2
ω j . (23)

However, choosing a set of appropriate weights is not a trivial
task.

An alternative strategy for mitigating problems associated
with the large magnitude variation in Î (s) is to estimate the
desired parameters by fitting log( Î (s)) instead. Because the log
function is monotonically increasing on (0,∞), minimizing
Eq. (13) is equivalent to minimizing

η(x) =
∥∥log

(
Î (s)

)
− log (I (s))

∥∥2
. (24)

Note that I (s)also depends on the parameter x to be estimated.
In this formulation, we may need to impose additional
constraints

I (s j ) > 0, for smin ≤ s j ≤ smax, (25)

to ensure that the second logarithmic term in Eq. (24) is well
defined.

The use of the objective function in Eq. (13) is not
appropriate when astigmatism and drift are present in the
micrograph. When C T F (s, θ), the envelope function E (s, θ)
and the background noise N2(s, θ) all vary with respect to
θ, one must resort to the most general form of the objective
function defined in Eq. (10). Because parameters α, B, Q and
ni (i = 1, 2, 3, 4) are all assumed to have angular dependency
in this case, and the defocus is now parameterized by three
parameters %z0, %z1 and θ0 that appear in Eq. (8), the
number of unknown parameters to be estimated becomes
7mθ + 3, where mθ is the number of angular samples used
in the evaluation of Eq. (10). The angular dependency
of the parameters to be estimated also introduces angular
dependency in the constraints defined by Eqs. (18)–(22). As a
result, the total number of non-linear constraints Eqs. (21) and
(22)) in the constrained non-linear optimization model will
increase by a factor of mθ. The increased number of unknowns
and constraints makes the optimization problem much more
difficult to solve. Hence, we need to seek other alternatives that
are computationally more efficient.

When the angular dependency of Eq. (3) is caused solely by
astigmatism, that is, the defocus %z(θ) is the only parameter
that varies with respect to θ, integrating the right-hand side
of Eq. (5) with respect to θ yields a closed-form expression,
which we will not show here. Such an expression allows us to

again reduce the 2D fitting problem to a 1D fitting problem.
Unfortunately, the residual norm in Eq. (13) associated with
this 1D fitting problem has far too many local minima within
the domain defined by the constraints in Eqs. (18)–(22). Hence,
it is difficult to compute the optimal estimation of the desired
parameters in practice.

When CT F (s, θ), E (s, θ) and N2(s, θ) vary slowly with
respect to θ, which is the case for good-quality images, a
simple and practical strategy that one can use to reduce the
complexity of the computation is to divide the 2D power
spectrum evenly into k angular sectors for some k that
is relatively small (e.g., between 8 and 10). This strategy
is discussed in Frank (1996) and implemented in Huang
et al. (2003). All parameters are assumed to be rotationally
invariant within each sector. Rotational averaging of the
power spectrum is performed within each sector to produce
k averaged 1D profiles. The unknown parameters associated
with Eq. (3) are estimated separately within each sector by
solving Eqs. (16)–(22) within that sector. This procedure
returns k defocus values %z( j ), j = 1, 2, . . . , k. These defocus
values can be used to estimate the parameters %z0, %z1 and
θ0 by solving a constrained non-linear least squares (NLSQ)
problem

min
δ0,δ1,θ0

1
2

k∑

j=1

[
%z0 + %z1 sin

(
2 j

2π

k
− 2θ0

)
− %z( j )

]2

,

(26)

subject to

%zmin
0 ≤ %z0 ≤ %zmax

0 , (27)

%zmin
1 ≤ %z1 ≤ %zmax

1 , (28)

θmin
0 ≤ θ0 ≤ θmax

0 . (29)

We will demonstrate that this strategy works very well for
images that contain a modest level of astigmatism.

When the experimental images contain significant amount
of astigmatism, one may need to divide the power spectrum of
each image into a larger number of angular sectors in order
to accurately determine the astigmatism parameters. The
potential pitfall of this approach is that the signal-to-noise ratio
(SNR) associated with the 1D rotationally averaged power
spectrum within each sector is likely to be very low; hence,
the defocus, the experimental B factor and other parameters
associated with each sector may not be reliably estimated.
We argue that in this case, the collected images should be
discarded anyway. However, such a decision calls for an
image analysis tool that can automatically make a distinction
between images that contain mild astigmatism and images
that are too distorted to be useful. We have developed such a
tool based on the active contour model (ACM) algorithm (Blake
& Isard, 1998). The main idea behind the ACM algorithm is to
use a special contour-tracing technique to identify concentric
Thon rings in the power spectra of each image. The ratio
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between the radii associated with the major and minor axes
of these elliptically shaped rings is estimated through a least
squares procedure. When the estimated ratio is much greater
than 1 (e.g 1.1), the image would be excluded from subsequent
image processing and reconstruction.

Numerical methods

In this section, we describe numerical algorithms and software
that we used to tackle the constrained non-linear minimization
problem formulated above. We focus on the 1D curve-fitting
formulation shown in Eqs. (16)–(22), which can be used
directly to estimate the unknown defocus and the parameters
for the envelope and noise functions when astigmatism and
drift are negligible. When both astigmatism and anisotropic
experimental B factor are present in the data, we divide the
power spectrum into several angular sectors and perform
separate 1D curve fittings within each sector.

The constrained minimization problem described by
Eqs. (16)–(22) can be solved in a number of ways. Algorithms
for solving general constrained non-linear optimization
problem include the quadratic penalty method, the log
barrier method, the augmented Lagrangian method and the
sequential quadratic programming (SQP) method (Nocedal
& Wright, 1999). We have chosen the SQP method because
recent studies (Gould et al., 2004) indicate that the SQP method
is the most effective one for small-to-medium-sized problems,
that is, problems with less than a thousand variables and
constraints.

To simplify the notation in the discussion that follows, we
denote the set of non-linear constraint functions in Eqs. (21)
and (22) by q (x), where x is a column vector representation of
the unknown parameters to be estimated, that is:

x = (α, B,%z, Q , n1, n2, n3, n4). (30)

In this notation, all non-linear constraints in Eqs. (21) and (22)
can be conveniently represented by a single vector inequality
q (x) ≥ 0.

The SQP algorithm searches for an optimal solution to
Eqs. (16)–(22) iteratively. In SQP, the approximate solution
xk is updated, at each step, by

xk+1 ← xk + τk pk, (31)

where the search direction pk is obtained by solving a
quadratic minimization problem of the form

min
pk

1
2

p T
k Hk pk + ∇ρ(xk )T pk, (32)

subject to the same bound constraints as defined in Eqs. (17)–
(20) and also the linearized constraint

∇q j (xk )T pk + q j (xk ) ≥ 0. (33)

The matrix Hk in Eq. (32) is an approximate Hessian of the
Lagrangian function

L (x, µ) = ρ(x) −
n∑

j=1

µ j q j (x), (34)

evaluated at the kth iterate xk , and µ = (µ1, µ2, . . . , µn)
denotes a set of Lagrangian multipliers associated with the
non-linear constraints q j (x). The step length τk in Eq. (31)
is chosen to minimize some merit function while keeping
the approximate solution xk+1 within the bound constraints
(Nocedal & Wright, 1999).

To use a constrained non-linear optimization solver, one
must provide procedures for calculating the objective function
in Eq. (13) or (24) and the constraint function q (x). One
may also provide a procedure for computing the gradient
of the objective function and the constraint with respect to
the unknown parameters in x. Because the derivatives of
the objective and constraint functions with respect to the
unknown parameters are easy to compute for the problem
defined in Eqs. (16)–(22), we carry out these operations
explicitly. If the procedures for the gradient calculation are
not supplied by the user, most software packages have the
capability to compute approximate gradient through the
technique of finite difference.

Several software packages have been developed to solve
non-linear constrained optimization problems using SQP.
Among the most well known are NPSOL (Stanford Business
Software, Inc. Palo Alto, CA, USA) (Gill et al., 1986, 2002;
Schittkowski, 1986) and the fmincon function in MATLAB
(MathWorks, 2004). We use the MATLAB fmincon function
for our implementation.

Results and discussion

Image data

Two types of data sets were generated to demonstrate the
applicability of the proposed method for the microscope
parameter determination. One data set was the focal series
images of an amorphous carbon film, which was evaporated
on freshly cleaved mica surface and then transferred onto a
holey grid. The images were recorded at 200 kV in a JEM2010F
EM (JEOL Ltd. Inc., Tokyo, Japan) onto the Gatan 4k × 4k
CCD camera (US4000) (Gatan Inc., Pleasanton, CA) at an
effective magnification of 110 400×. To assess the reliability
and accuracy of our computational estimation scheme, we
collected images of the carbon film in a broad range of defocus
settings from 0.2- to 5.0-µm underfocus.

The carbon film was chosen as the test specimen for our
algorithm because of the ease of detecting the CTF rings in the
power spectra of the images. The images were taken with a
pre-determined defocus so that we can assess the accuracy of
the proposed computational procedure. Figure 1 shows a focal
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Fig. 1. 200-kV CCD frames of carbon film (a–d) and their corresponding power spectra (e–h) taken under different defocus settings: (a) 0.5 µm, (b) 1 µm,
(c) 3 µm and (d) 4 µm.

Fig. 2. Power spectrum of a carbon film image with a mild astigmatism
(CTF ring eccentricity = 0.03).

series of carbon film images and their corresponding power
spectra. In this case, the astigmatism was well adjusted to a
negligible level prior to the data collection. These represent the
best type of data that could be recorded. To test the capability
of astigmatism estimation, we purposely introduced a mild
level of stigmatism in the image, the power spectrum of which
is shown in Fig. 2. The structure factor for the carbon film
data set was estimated from electron diffraction pattern of the
carbon film (courtesy of Dr. Jaap Brink).

The second set of data was the P22 mature phage particles
recorded onto photographic films (Kodak SO-163, Kodak
Co., Rochester, NY) in the JEM3000SFF EM (JEOL Ltd. Inc.)
operated at 300 kV and specimen temperature of 4.2 K.
Images between 0.5- and 3-µm underfocus were used in

this test (e.g. Fig. 3). In this data set, no carbon film was
used to determine the CTF and associated parameters because
the ice-embedded virus particles are suspended across holes
with no support film. The data were digitized with a Nikon
scanner (Nikon Inc., Melville, NY) at a scanning interval of
1.06 Å/pixel. The 1D scattering curve associated with the P22
mature phage was obtained from the modified X-ray solution
scattering experiment (Thuman-Commike et al., 1999) to yield
the best fit for a broad spectra of spatial frequencies to the cryo-
EM data.

CTF and associated parameter estimation of carbon film images
with negligible astigmatism

Using the estimated structure factor, we applied the
constrained non-linear minimization algorithm (the MATLAB
fmincon function) discussed in ‘Numerical methods’ to each
individual power spectrum image shown in Fig. 1. The bound
constraints for each of the parameters are listed in Table 1.
The cutoff frequencies defined in Eq. (11) were chosen to be
smin = 0.02 Å−1 and smax = 0.2 Å−1. Our initial guesses for
the B factors, amplitude contrast ratio, and noise parameters
were set to: B = 100, Q = 0.1 and n1 = n2 = n3 = n4 = 1.0,
respectively. Because our data set contains images taken under
a wide range of defocus settings, we tried five different starting
guesses for the defocus value (d z = 1.0, 3.0, 5.0, 7.0, 9.0µm)
for each of the runs. The CTF, envelope function and noise
parameters associated with minimum final objective function
value in Eq. (13) among the five runs were chosen to be
our optimal estimation of the parameters. Note that all these
procedures are implemented as part of the fitting processes;
there is no need for the user to provide initial guess for different
micrographs and repeat the runs.

Table 2 shows typical convergence history associated
with each fmincon run. The first column of this table lists
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Fig. 3. 300-kV CCD frames of P22 mature phage (a and b) taken under different defocus settings and the corresponding power spectra (c and d). The
estimated defocus is 0.41 µm for (a) and 1.14 µmfor (b).

Table 1. The bound constraints for the CTF, envelope function and noise
parameters to be estimated.

Lower bound Upper bound Lower bound Upper bound
Parameter (carbon film) (carbon film) (P22 phage) (P22 phage)

%z 0 9.0 0 4.0
B 0 ∞ 0 ∞
α 0 ∞ 0 ∞
Q 0 0.2 0 0.1
n1 – ∞ ∞ – ∞ ∞
n2 – ∞ ∞ – ∞ ∞
n3 0.0 ∞ 0.0 ∞
n4 – ∞ ∞ – ∞ ∞

the iteration number. Column 2 gives the total number of
function evaluations performed up to the kth iteration. The
progress of the convergence is measured by the value of the
objective function (column 3), the magnitude of the directional
derivative along the search direction (column 4) and the norm
of the Lagrangian gradient (column 5), which provides the
necessary first-order optimal condition for the constrained

non-linear optimization problem defined in Eq. (16). The
minimization procedure was terminated when the norm of
the Lagrangian gradient is less than 0.05. The final objective
function attains the value of 0.08, indicating a good match
between the computational model defined by the estimated
parameters and the power spectrum data. In Fig. 4, we plot
both the 1D rotationally averaged power spectrum (the red
curve) and the intensity curve defined by the function in
Eq. (12) using the optimal parameters returned from the
constrained minimization procedure (the blue curve). It is
apparent that the difference between the experimental data
(the red curve) and the fitted data (the blue curve) is negligible
in the frequency domain of interest. This suggests that our
constrained optimization procedure successfully identified
the global minimum of the objective function defined in
Eq. (16).

In Table 3, we list the optimal parameters associated with
these carbon film images. The first row of this table gives the
intended defocus values during the data collection, where
the defocus of the first image was determined using the
DigitalMicrograph software (Gatan, Inc.) and the defocuses
of the rest of the images were digitally set using the JAMES
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Table 2. A typical convergence history of fmincon when it is applied to
CTF parameter estimation of a carbon film.

k f -count η(α, β, %z, Q , {ni }) ∇ηT sk ‖L‖

1 9 453.9 −1440 3160
11 126 32.82 −0.33 14.4
21 232 28.71 0.002 6.02
31 341 28.34 −0.06 4.77
41 453 24.00 −0.2 18.4
51 559 21.12 −0.39 25.8
61 662 3.538 1.07 85.4
71 762 0.09 −0.02 3.63
76 812 0.08 −7e−7 0.04

The first column gives the iteration number. The second column gives the
total number of function evaluations at the end of the kth iteration. The
third column lists the relative norm of the residual. The fourth column
gives the directional derivative at the kth iteration. The last column gives
the first-order optimality of the constrained optimization problem.

software (Marsh et al., 2007) (Booth et al., 2004). Clearly, our
estimations of the defocus values (the second row) match very
well with the intended defocuses. This suggests that our fitting
procedure can be used reliably to estimate the CTF parameters
associated with images taken under a wide range of defocus
settings.

The importance of constraints

We shall emphasize the importance of constraints in the
formulation of the minimization problem in Eqs. (16)–(22).
Removing bound and/or non-linear constraints from the
problem formulation turns the CTF parameter estimation
problem into a standard NLSQ problem that can be solved
efficiently using a Gauss–Newton-type of method (Dennis et al.,
1981; More et al., 1984; Nocedal & Wright, 1999). However,
unless the starting guess used by an NLSQ solver is sufficiently
close to the optimal solution, one may obtain a solution that
is physically wrong.

To illustrate this point, we use the power spectrum
associated with the carbon film micrograph as an example.
The image is taken under roughly 1.0-µm defocus (Fig. 1b).
We plot the contour of the function

ζ (%z, B) = ρ
(
α, B,%z, Q , n1, n2, n3, n4

)
, (35)

where ρ is the objective function defined in Eq. (13), and
α, Q and ni are fixed at the optimal values obtained from
a manual fit. This function is the restriction of ρ to a 2D sub-
space (spanned by B and %z), with α = α, Q = Q and ni = ni ,
for i = 1, 2, 3, 4.

The contour plot shown in Fig. 5 indicates that ζ (%z, B)
has two local minima within [−2, 2] × [0, 300]. The desired
local minimum is marked by a plus sign on the right half of
the figure. If the update of the approximate minimizer in an
NLSQ solver is not restricted to ensure that the underdefocus

is used, the optimization procedure may converge to a local
minimum that is entirely infeasible. Figure 5 also shows that
the convergence of the optimization algorithm is less sensitive
to the starting guess for B because ζ (%z, B) appears to be
convex in the direction of B within the neighbourhood of
interest.

To demonstrate the importance of the non-linear
constraints, we applied an NLSQ solver to Eq. (16) alone
without additional constraints using a starting guess close
to the optimal solution. Figure 6 shows that without the non-
linear constraints, the NLSQ solver converged to an infeasible
solution in which the background term N2(s) in Eq. (12)
becomes larger than the measured power spectrum at the
second and the third CTF zeros. The quality of the fitting curve
is considerably worse than that obtained from constrained
non-linear optimization shown in Fig. 9(b).

Multiple starting guesses for the defocus parameter

The bound and non-linear constraints established in Eqs. (17)–
(22) do not completely remove all undesirable local minima
of Eq. (16). When particle images are collected under a broad
range of defocus settings (i.e., the difference between %zmin

and %zmax is large), the objective function in Eq. (16) may still
have multiple local minima within the range of the defocus of
interest. Figure 7 shows the change of the objective function
in Eq. (16) with respect to different defocus values along
the line segment defined by x = (α, B,%z, Q , n1, n2, n3, n4),
where α, B, Q and ni (i = 1, 2, 3, 4) are optimal parameters
determined in advance and %z ∈ [0, 10] µm. Clearly, the
objective function ρ(x) contains two local minima within this
interval. The global minimum (marked by the circle) is located
at%z = 0.53µm,which is the desired defocus value associated
with this particular data set. However, if one chooses the initial
guess of the defocus to be around 8.0 µm, for example, SQP
may converge to an incorrect defocus value that corresponds
to the undesirable local minimum located near 7.8 µm.

To prevent SQP from converging to the wrong local minima
within the defocus range of interest, we solve Eqs. (16)–(22)
with multiple starting guesses evenly distributed between
%zmin and%zmax. Because the number of local minima within
the defocus range of interest is typically small, we normally
need to try only three to five different starting guesses.

Astigmatism estimation

When images contain a mild level of astigmatism, such as the
one shown in Fig. 2, we apply the practical procedure discussed
earlier to estimate all angular dependent parameters. To
test this procedure on the power spectrum shown in
Fig. 2, we divided the power spectrum evenly into eight
angular sectors. Each sector was rotationally averaged to
produce a 1D curve to be fitted with the constrained non-
linear model described in Eqs. (16)–(22). Figure 8(a) shows
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Fig. 4. Comparing the 1D rotationally averaged power spectrum data (the red dots) with the CTF fitting curves (the solid blue curves) generated by the
constrained non-linear minimization in a series of carbon film images shown in Fig. 1(a)–(d). The dash-dotted curves in (a)–(d) show the noise background
estimated by solving Eqs. (16)–(22).

Table 3. The CTF, envelope function and noise background parameters returned from the constrained non-linear minimization procedure (the MATLAB
fmincon function) for carbon film images taken at different defocus settings.

Intended %z (µm) 0.2 0.5 1.0 1.5 2.0 3.0 4.0 5.0 9.0

Determined %z (µm) 0.23 0.54 1.04 1.55 2.05 3.06 4.10 5.13 9.36
B (Å2) 119 104 104 104 106 110 116 126 186
α 12.0 8.14 6.66 5.91 5.43 4.99 4.72 4.63 4.39
Q 0.03 0.0 0.01 0.02 0.03 0.03 0.03 0.03 0.02
n1 −2.26 26.0 16.4 13.5 23.2 31.6 33.0 27.9 33.5
n2 17.0 −33.6 −10.1 −2.8 −22.5 −39.8 −4.2 −27.9 −34.7
n3 5.8 343 86.3 56.9 197 547 719 435 1402
n4 −0.7 4.6 −2.5 −1.3 3.4 4.5 4.6 −3.4 3.6

The first row (bold-faced numbers) of the table shows the intended defocus under which each image is taken.
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Fig. 5. The contour of associated with the image of carbon film taken
under roughly 1.0-µm defocus. This function has two local minima. The
desired local minimum is marked by a plus sign on the right half of the
contour plot.
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Fig. 6. Without imposing the non-linear constraints in Eqs. (21) and (22),
applying an NLSQ fitting procedure to the P22 mature phage particle
image shown in Fig. 3(b) returns a solution in which the background
term N(s) in Eq. (12) (the black dash-dotted curve) is larger than the
power spectrum (the red dots) near 0.06 Å−1 and 0.14 Å−1.

the 1D curves generated from different angular sectors of the
power spectrum shown in Fig. 2. These curves differ slightly in
the positions of their peaks and valleys, implying the variation
of the defocus along different radial directions.

In Fig. 8(b), we plot the defocus values derived from
the constrained non-linear minimization procedure (applied
to each angular sector) against θ̂k , where θ̂k is the angle
formed by the bisector of the kth angular sector and the

horizontal axis. The estimated defocus values are marked
by circles. An NLSQ algorithm was used to fit these
defocus values to the analytical expression %z(θ) = %z0 +
%z1 sin(2(θ − θ0)). The fitting procedure produces%z0 =
0.546µm,%z1 = 0.017 µm and θ0 = 0.059. At this level of
astigmatism, the power spectrum exhibits obvious elliptically
shaped Thon rings. The level of eccentricity (e = %z1/%z0)
of the Thon rings is 0.03 based on the above fitted defocus
parameters.

We should point out that multiple starting guesses are
typically required to solve the constrained NLSQ problem in
Eqs. (16)–(22) in at least one of the angular sectors. Once
the parameter estimation problem has been solved for that
angular sector, the estimated parameters associated with that
particular angular sector can be used as the starting guesses for
the minimization procedure applied to other angular sectors.
Because the variation of the CTF, envelope function and noise
background parameters are typically small for images that
contain mild astigmatism and drift, the use of this starting
guess often enables the optimization routine to converge to a
few iterations.

It is worth pointing out that typical cryo-EM images to
be used for image reconstruction have a negligible level of
astigmatism (Thon ring eccentricity <0.01) that is much
smaller than that shown in this test case (Thon ring
eccentricity = 0.03). In fact, single-particle cryo-EM studies
have been able to obtain near-atomic-resolution, (∼4 Å) 3D
reconstructions without the need of considering astigmatism
in the images (Jiang et al., 2008; Ludtke et al., 2008). Although
we have shown here that this method can successfully handle
the images with a significant level of astigmatism, the use
of this functionality is rarely necessary in practice for single-
particle cryo-EM study.

Parameter estimation with images of ice-embedded particles

Often the ice-embedded particles are suspended across holes
without any carbon substrate, as shown in Fig. 3(a) and
(b). The incoherent average of the power spectrum of the
boxed-out particles has been used to determine the CTF and
associated parameters by manual fitting procedure (Saad
et al., 2001). Figure 9 shows that the fitting curves produced
by the optimization procedure match extremely well with the
1D rotationally averaged power spectra of the micrographs.
Furthermore, the determined parameters compare well with
those determined manually. These data show that even
without the carbon support film, our fitting method works
equally well with authentic ice-embedded particle images.

CPU Requirements

The average amount of processing time required to fit a
micrograph of 240-MB size on a 1.8-GHz Pentium 4 laptop is
under a minute. With a meticulous choice of the convergence
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Fig. 7. Variation of the objective function in Eq. (16) with respect to the defocus values along the line segment defined by x = (α, B, %z, Q , n1, n2, n3, n4),
where α, B, Q = Q and ni (i = 1, 2, 3, 4) are optimal parameters determined in advance. Clearly, Eq. (16) has two local minima in [0, 10] µm. The
desired global minimum is marked by a circle near 0.5µm.
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Fig. 8. (a) Variation of the 1D power spectra obtained from rotationally averaging the 2D power spectrum shown in Fig. 2 among eight evenly divided
angular sectors. (b) Variation of the defocus along different radial directions. The circles represent the defocus value estimated from each angular sector of
the power spectrum. The curve corresponds to the function %z(θ) = %z0 + %z1sin(2(θ− θ0)) , where %z0, %z1 and θ0 are estimated by a non-linear
least squares fitting procedure.

tolerance and maximum iteration number, the computational
time can be further reduced. In practice, the range of defocus
values associated with the experimental data is often much
less than 10 µm. Thus, we may either tighten the bound
constraints associated with the defocus or reduce the number
of initial guesses to further speed up the computation.

General accessibility of the software

The algorithms and techniques described here have been
implemented as a stand-alone Python script, which is available
on the NCMI website (http://ncmi.bcm.edu/software/fitctf). It
runs on all the major computer platforms (Linux, Windows
and MacOS X). It allows the user to perform CTF estimation
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Fig. 9. Comparing the 1D rotationally averaged power spectrum data
(the red dots) with the CTF fitting curves (the solid blue curves) generated
by the constrained non-linear minimization on the P22 mature phage
images shown in Fig. 3(a) and (b). The dash-dotted curves in Fig. 3(a) and
(b) show the noise background estimated by solving Eqs. (16)–(22).

in a fully automated fashion once the 2D single particles have
been boxed out from the micrograph. The resulting parameters
are formatted to become compatible to single-particle image-
processing software package EMAN (Ludtke et al., 1999).

Conclusions

An accurate determination of the CTF and associated
parameters is essential in 3D structural determination of
biological samples. Though manual fitting methods for these
determinations have been used successfully, it is time-
consuming and subject to human errors. The proposed
constrained non-linear minimization algorithm has provided
not only an objective and accurate but also an automated

protocol. The examples shown here demonstrate its utility
not only in images of carbon film but also in ice-embedded
biological particles. A unique feature of this algorithm is
the ability of determining images taken at smaller defocus
(i.e. 0.5 µm), which is desirable for high-resolution structure
determination (Liu et al., 2007; Jiang et al., 2008). For such a
small defocus image, it is generally difficult to estimate its CTF
with confidence by a manual fitting method. This algorithm
has been successfully applied to determine the CTF and
associated parameters in images used for 3D reconstruction
in a broad range of resolutions (e.g. Chang et al., 2006; Jiang
et al., 2006, 2008).

Although the extension (Fig. 8) of our non-linear
optimization-based fitting procedure can handle images with
astigmatism and anisotropic B factor, the accuracy of their
determination may not be very high because of the need of
dividing the power spectrum into multiple sectors, resulting
in a poor SNR. By contrast, many structures of single particles
have been determined to a 4- to 9-Åresolution without
considering astigmatism and anisotropic B factor by excluding
those images with apparent astigmatism and/or drift (Zhou
et al., 2001; Jiang et al., 2003; Ludtke et al., 2004, 2005).
More recently, the structure of ε15 phage has been solved
to 4.5 Å (Jiang et al., 2008) using the CTF and associated
parameters determined with this procedure. Therefore, our
proposed algorithm will be of immediate usage for data up
to this resolution range in which the resulting structure is
interpretable in terms of protein backbone trace.
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